import numpy as np import pandas as pd import os project_path = os.path.dirname(os.path.abspath(__file__)) # 获取当前文件路径的上一级目录 # 有表头的时候,跳过行 设置头部,获取行范围 x = pd.read_csv(project_path + '/test.csv', encoding='gbk', header=0, skiprows=0, nrows=4) print(x) # 没表头的时候,当列索引不存在时,默认从0开始索引 data = pd.read_csv(project_path+'/test.csv', encoding='gbk', header=None) print(data) # 没表头的时候, 设置列索引 data = pd.read_csv(project_path+'/test.csv', encoding='gbk', header=None, names=['year', '丰田', '通用', '雪佛兰', '红旗']) print(data) x = pd.read_csv(project_path + '/test.csv', encoding='gbk', header=0, sep='|', skiprows=range(1, 4)) print(x) x = pd.read_csv(project_path + '/test.csv', encoding='gbk', sep='|', skiprows=[1, 2, 3, 4, 5, 6, 7, 8, 9]) print(x) # 将一(多)列的元素作为行(多层次)索引 x = pd.read_csv(project_path + '/test.csv', encoding='gbk', header=None, names=['A', 'B', 'C', 'D', 'E'], index_col='A') print(x) x = pd.read_csv(project_path+'/test.csv', encoding='gbk', header=None, names=['A','B','C','D', 'E'], index_col=['A', 'C']) print(x) # 标签 df = pd.read_csv(project_path + "/test.csv",encoding='gbk') data = np.array(df.loc[:, :]) labels = list(df.columns.values) print(labels) # 一般NULL nan 空格 等自动转换为NaN x = pd.read_csv('data3.csv', na_values=[]) # 将某个元素值设置为NaN x = pd.read_csv('data3.csv', na_values=['Nan']) # 在对应列上设置元素为NaN setNaN = {'C':['Nan'],'D':['b','c']} x = pd.read_csv("data3.csv", na_values=setNaN) # 保存数据到csv文件 x.to_csv('data3out.csv') # 保存数据到csv文件,设置NaN的表示,去掉行索引,去掉列索引(header) x.to_csv('data3out.csv',index=False,na_rep='NaN',header=False) x = pd.read_csv("data3out.csv",names=['W','X','Y','Z']) # 读取数据 x = pd.read_table('data4.txt', sep='\s+') # sep:分隔的正则表达式 # 使用numpy读取txt x = np.loadtxt('data5.txt', delimiter='\t') # 分隔符
转载请注明:SuperIT » python 操作excel,csv文件导入导出