storm消费kafka实现实时计算
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/wangyangzhizhou/article/details/52440862
大致架构
* 每个应用实例部署一个日志agent
* agent实时将日志发送到kafka
* storm实时计算日志
* storm计算结果保存到hbase
storm消费kafka
- 创建实时计算项目并引入storm和kafka相关的依赖
<dependency>
<groupId>org.apache.storm</groupId>
<artifactId>storm-core</artifactId>
<version>1.0.2</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>org.apache.storm</groupId>
<artifactId>storm-kafka</artifactId>
<version>1.0.2</version>
</dependency>
<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka_2.10</artifactId>
<version>0.8.2.0</version>
</dependency>
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 创建消费kafka的spout,直接用storm提供的KafkaSpout即可。
- 创建处理从kafka读取数据的Bolt,JsonBolt负责解析kafka读取到的json并发送到下个Bolt进一步处理(下一步处理的Bolt不再写,只要继承BaseRichBolt就可以对tuple处理)。
public class JsonBolt extends BaseRichBolt {
private static final Logger LOG = LoggerFactory
.getLogger(JsonBolt.class);
private Fields fields;
private OutputCollector collector;
public JsonBolt() {
this.fields = new Fields("hostIp", "instanceName", "className",
"methodName", "createTime", "callTime", "errorCode");
}
@Override
public void prepare(Map stormConf, TopologyContext context,
OutputCollector collector) {
this.collector = collector;
}
@Override
public void execute(Tuple tuple) {
String spanDataJson = tuple.getString(0);
LOG.info("source data:{}", spanDataJson);
Map<String, Object> map = (Map<String, Object>) JSONValue
.parse(spanDataJson);
Values values = new Values();
for (int i = 0, size = this.fields.size(); i < size; i++) {
values.add(map.get(this.fields.get(i)));
}
this.collector.emit(tuple, values);
this.collector.ack(tuple);
}
@Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(this.fields);
}
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 创建拓扑MyTopology,先配置好KafkaSpout的配置SpoutConfig,其中zk的地址端口和根节点,将id为KAFKA_SPOUT_ID的spout通过shuffleGrouping关联到jsonBolt对象。
public class MyTopology {
private static final String TOPOLOGY_NAME = "SPAN-DATA-TOPOLOGY";
private static final String KAFKA_SPOUT_ID = "kafka-stream";
private static final String JsonProject_BOLT_ID = "jsonProject-bolt";
public static void main(String[] args) throws Exception {
String zks = "132.122.252.51:2181";
String topic = "span-data-topic";
String zkRoot = "/kafka-storm";
BrokerHosts brokerHosts = new ZkHosts(zks);
SpoutConfig spoutConf = new SpoutConfig(brokerHosts, topic, zkRoot,
KAFKA_SPOUT_ID);
spoutConf.scheme = new SchemeAsMultiScheme(new StringScheme());
spoutConf.zkServers = Arrays.asList(new String[] { "132.122.252.51" });
spoutConf.zkPort = 2181;
JsonBolt jsonBolt = new JsonBolt();
TopologyBuilder builder = new TopologyBuilder();
builder.setSpout(KAFKA_SPOUT_ID, new KafkaSpout(spoutConf));
builder.setBolt(JsonProject_BOLT_ID, jsonBolt).shuffleGrouping(
KAFKA_SPOUT_ID);
Config config = new Config();
config.setNumWorkers(1);
if (args.length == 0) {
LocalCluster cluster = new LocalCluster();
cluster.submitTopology(TOPOLOGY_NAME, config,
builder.createTopology());
Utils.waitForSeconds(100);
cluster.killTopology(TOPOLOGY_NAME);
cluster.shutdown();
} else {
StormSubmitter.submitTopology(args[0], config,
builder.createTopology());
}
}
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 本地测试时直接不带运行参数运行即可,放到集群是需带拓扑名称作为参数。
- 另外需要注意的是:KafkaSpout默认从上次运行停止时的位置开始继续消费,即不会从头开始消费一遍,因为KafkaSpout默认每2秒钟会提交一次kafka的offset位置到zk上,如果要每次运行都从头开始消费可以通过配置实现。
转载请注明:SuperIT » storm消费kafka实现实时计算